Exploratory Combinatorial Optimization with Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Neural Combinatorial Optimization with Reinforcement Learning
This paper presents a framework to tackle combinatorial optimization problems using neural networks and reinforcement learning. We focus on the traveling salesman problem (TSP) and train a recurrent neural network that, given a set of city coordinates, predicts a distribution over different city permutations. Using negative tour length as the reward signal, we optimize the parameters of the rec...
متن کاملA Reinforcement Learning Framework for Combinatorial Optimization
The combination of reinforcement learning methods with neural networks has found success on a growing number of large-scale applications, including backgammon move selection (Tesauro 1992), elevator control (Crites & Barto 1996), and job-shop scheduling (Zhang & Dietterich 1995). In this work, we modify and generalize the scheduling paradigm used by Zhang and Dietterich to produce a general rei...
متن کاملWorkshop Track -iclr 2017 Neural Combinatorial Optimization with Reinforcement Learning
We present a framework to tackle combinatorial optimization problems using neural networks and reinforcement learning. We focus on the traveling salesman problem (TSP) and train a recurrent neural network that, given a set of city coordinates, predicts a distribution over different city permutations. Using negative tour length as the reward signal, we optimize the parameters of the recurrent ne...
متن کاملGlobal Search in Combinatorial Optimization using Reinforcement Learning Algorithms
This paper presents two approaches that address the problems of the local character of the search and imprecise state representation of reinforcement learning (RL) algorithms for solving combinatorial optimization problems. The first, Bayesian, approach aims to capture solution parameter interdependencies. The second approach combines local information as encoded by typical RL schemes and globa...
متن کاملEfficient Reinforcement Learning with Bayesian Optimization
OF THE DISSERTATION Efficient Reinforcement Learning with Bayesian Optimization By Danyan Ganjali Doctor of Philosophy in Mechanical and Aerospace Engineering University of California, Irvine, 2016 Professor Athanasios Sideris, Chair A probabilistic reinforcement learning algorithm is presented for finding control policies in continuous state and action spaces without a prior knowledge of the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i04.5723